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• NLP models are huge — much larger than mobile settings

Modern NLP is EXPENSIVE
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Figure: Parameter numbers of modern NLP models
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• Auto-ML’s huge searching cost raises environmental concerns on CO2.
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Figure: The design cost measured in CO2 emission (lbs)
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Transformer Framework
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AttentionAttention FFN

Transformer Block 1 Transformer Block 2
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A Different View
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A Different View of Transformer Block

AttentionAttention FFN FFN
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• The FFN takes more than a half of the computation.

Is Bottleneck Effective for 1-D Attention?
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Attention FFN

754M, 
56%

582M, 
44%

Mult-Adds 

FFN

Base Transformer Block Computation Proportion



Lite Transformer with Long-Short Range Attention, ICLR’20

• Attentions take major computation, leaving larger space for optimization.

Flattened Transformer
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What does Attention Learn?

Visualization of Attention Weights

FFNFFN
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• Attention captures both sparse global context and diagonal local information.
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What does Attention Learn?

Visualization of Attention Weights

FFNFFN
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Motivated by Hardware Design

CPUs

Redundant

Flexible

FPGAs

• Specialization is the key in efficient hardware design (e.g. FPGA accelerators)

Efficient

Specialized



Lite Transformer with Long-Short Range Attention, ICLR’20 11

Base Transformer is Redundant

FFNFFN Attention
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Long-Short Range Attention (LSRA)

12

FFNFFN Attention

GLU Conv FC
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(b) WIKITEXT-103
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Lite Transformer

(a) WMT’14 En-Fr

• Our Lite Transformer performs well on machine translation (a), abstractive 
summarization, and language modeling (b).
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Lite Transformer vs AutoML

#Params #Mult-Adds BLEU GPU Hours
CO2

Emission
(lbs)

Cloud Cost
($)

Transformer 2.8M 87M 21.3 1.0× 102 2.6× 101 $2.3× 102

Evolved Transformer
[AutoML] 3.0M 94M 22.0 2.2× 106 6.3× 105 $5.5× 106

Lite Transformer (Ours)
[LSRA] 2.9M 90M

𝟐𝟐𝟐𝟐.𝟓𝟓
(+𝟎𝟎.𝟓𝟓) 1.1× 𝟏𝟏𝟏𝟏𝟐𝟐 3.2× 𝟏𝟏𝟏𝟏𝟏𝟏 $2.8× 𝟏𝟏𝟏𝟏𝟐𝟐

Better Performance

20000×
Reduction
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Further Compress Lite Transformer by 18.2x
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18.2×

• Our Lite Transformer is orthogonal to general model compression techniques.
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Flattened
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