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Motivation: DNNs on the Edge Devices

Patient Awake

Solution |: Inference on the Edge Solution |l: Inference on the Cloud
Privacy is well-preserved. Privacy is compromised.
Computation is expensive. Computation is affordable.
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Privacy-Preserving Edge-Cloud Inference

M2 (with NP layers) MT (with NZid layers) M (with N2™ layers)

Properties required for encryption and decryption function:

Property I. They should not be invertible (without knowing the private key).

Property ll: They should be compatible with the neural network model.
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Privacy-Preserving Edge-Cloud Inference

M2 (with NP layers) MT (with NZid layers) M (with N2™ layers)

Given a batch of input data x = [x1, x2] and a linear model M
M(ax1 + bxo) = aM(x1) + bM(x2)
M(cx+s + dx2) = cM(x1) + dM(x2)

M(x1) and M(x2) can be solved from M(ax1 + bx2) and M(cx1 + dx>)
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Privacy-Preserving Edge-Cloud Inference

M2 (with NP layers) MT (with NZid layers) M (with N2™ layers)

Private Key: a random coefficient matrix A
Encryption: linearly combine the batched inputs: y = Ax

Decryption: solve the linear equations to obtain the outputs: y = A-'x
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Privacy-Preserving Edge-Cloud Inference

Preprocess Main Postprocess
Inputs Mo Intermediate Inputs ME Intermediate Outputs M st Outputs
Encryption Decryptlon
| E(x; K) | |
| | | |
Edge Cloud (FLOPs > 80%) Edge
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Compared with other edge-cloud frameworks

Baseline (cloud) Osiaetal. [41, 4] Tramer et al. [50] Ours
Computation (on edge) 0% 93% ~1%" 1% 13%
Transmission size 0.6 MB 0.4 MB 86.5 MB 12.3 MB 3.0 MB
Transmission time 0.4 sec 0.3 sec 33.1 sec 6.6 sec 1.7 sec
GPU utilization (cloud) 100% 100% ~10%™ 100% 100%
Input privacy X v v v v
Output privacy X X v v v

Table 1: Our framework achieves high efficiency on the edge, introduces small network communication overhead, attains full
resource utilization on the cloud, and protects both input and output privacy. All benchmarks are conducted on VGG-16 [45]
with 1input 1image size of 224x224, and the transmissions are over the 4G LTE network with upload speed of 15 Mbps,
download speed of 30 Mbps, and delay of 25 ms. As for our framework, we send the output activation of the first or second
convolution layer to the cloud (the last two columns). In this table, the red entries are unsatisfactory.
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Results on Facial Attribute Classification

Efficiency (| 1s better) Accuracy (T 1s better) Privacy (| 1s better)
Edge Params  Edge FLOPs Valid Acc. Test Acc. Person 1D Face Attrs.

Baseline (all on Edge) 11.21M 1.50G 91.6% 91.0% 0.1% 50.0%
Baseline (all on Cloud) 0 0 91.6% 91.0% 85.5% 79.3%
Adding Noise N (0,4) [43] 0 0 89.2% 88.6% 46.5% 73.1%
Adding Noise N (0, 8) [43] 0 0 88.5% 87.9% 35.3% 70.8%
Blurring (16x16) [43, 45] 0 0 89.6% 89.0% 52.2% 73.1%
Blurring (8 x8) [43, 45] 0 0 87.9% 87.3% 25.6% 68.7%
Face Anonymizer [43] 11.38M 47.13G 90.5% 89.8% 62.6% 76.3%
FaceMix (Ours) (5 =8, Npre = 1) 0.05SM 0.09G 91.2% 90.7% 0.6% 51.5%
FaceMix (Ours) (Sg = 8, Npre = 2) 0.12M 0.28G 91.2% 90.7% 0.6% 51.6%
FaceMix (Ours) (SG = 8, Npre = 3) 0.20M 0.46G 91.4% 91.0% 0.6% 51.5%

Table 2: Privacy-preserving facial attribute classification on CelebA. The red entries are unsatisfactory (efficiency: the fewer
FLOPs the better; privacy: the lower attack success rate the better). We require fewer computations on the edge, while
maintaining higher accuracy and lower attack success rate.
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Results on Facial Attribute Classification
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Attack Results on Faces from Encryptions
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Attack Results on Faces from Encryptions
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Attack Results on Faces from Encryptions
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Additional Results on Facial Attribute Classification

Efficiency (] is better) Accuracy (T 1s better) Privacy (] is better)
Edge Params  Edge FLOPs Test Acc. Bal. Acc. Face Recon. Face Attrs.
Baseline (all on Edge) 11.21IM 1.50G 91.1% 87.1% -0.56 50.0%
Baseline (all on Cloud) 0 0 91.1% 87.1% -0.00 87.1%
Adding Noise N (0,4) [43] 0 0 88.5% 82.5% -0.03 82.7%
Adding Noise N (0, 8) [43] 0 0 87. 7% 81.3% -0.02 81.4%
Blurring (16 x16) [43, 45] 0 0 88.8% 83.4% -0.03 83.6%
Blurring (8 x8) [43, 45] 0 0 87.0% 80.6% -0.07 77.8%
FaceMix (Ours) (Sg =8, Npe = 1) 0.05M 0.09G 90.5% 86.8% -0.37 50.6%
FaceMix (Ours) (5S¢ = 8, Npre = 2) 0.12M 0.28G 90.7% 86.9% -0.37 50.7%
FaceMix (Ours) (S = 8, Ny = 3) 0.20M 0.46G 90.7% 87.1% -0.37° 50.6%

Table 3: Privacy-preserving facial attribute classification on LFWA. Bal. Acc. denotes the balanced accuracy on the test set
and Face Recon. represents the inverse mean square error of the reconstructed images (GAN-based) with the raw inputs. ~The
GAN-based attack model 1s applied on the encrypted input image without the preprocessing model for fair comparison.
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Future Works

I IIAN LAla,



Thank You!
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