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● Reinforcement learning can be defined in high-level update 

equations.

● The implementation have remained quite low-level, i.e. at the 

level of message passing.

Deep Reinforcement Learning

Figure credit to OpenAi Gym
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Needs of RL Researchers

● RL practitioners are typically not system engineers

● RL algorithms should be customizable in various ways

Library Distribution Scheme Generality Programmability #Algo

RLGraph Pluggable General Purpose Low-level / Pluggable 10+

Deepmind Acme Actors + Reverb Async Actor-Learner Limited 10+
Intel Coach Actor + NFS Async Actor-Learner Limited 30+
RLlib Ray Actors General Purpose Flexible, but Low-level 20+

RLlib Flow Actor / Dataflow General Purpose Flexible and High-level 20+



4 ©2021 
RISELab

 1 # launch gradients computation tasks

 2 pending_gradients = dict()

 3 for worker in remote_workers:

 4     worker.set_weights.remote(weights)

 5     future = worker.compute_gradients

 6         .remote(worker.sample.remote())

 7     pending_gradients[future] = worker   

 8 # asynchronously gather gradients and apply

 9 while pending_gradients:

10     wait_results = ray.wait(

11         pending_gradients.keys(), 

12         num_returns=1)

13     ready_list = wait_results[0]

14     future = ready_list[0]

15 

16     gradient, info = ray.get(future)

17     worker = pending_gradients.pop(future)

18     # apply gradients

19     local_worker.apply_gradients(gradient)

20     weights = local_worker.get_weights()

21     worker.set_weights.remote(weights)

22     # launch gradient computation again

23     future = worker.compute_gradients

24         .remote(worker.sample.remote())

25     pending_gradients[future] = worker 

RL Implementation Remains Low Level

Data Flow 

Worker Management

Execution Logic

A3C Implementation in RLlib
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Hard to read, customize and optimize
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Complex Algorithms for RL

● Complex algorithms possible but require low-level code

○ Ape-X: 250 lines of Python

○ IMPALA: 694 lines of Python

How can we reduce the lines of code required to define a new 

distributed algorithm?
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Multi-Agent Use Cases

● From the systems perspective, multi-agent training often does 

not impact distributed execution

● Exceptions:

○ Training agents different optimization frequencies

○ Training agents with different distributed algorithms

How can we support composing existing RL algorithms without 

requiring a rewrite?
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Reinforcement Learning Basics

● RL is more like data analytics than supervised learning. 

● We can view RL training as dataflow
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Dataflow of Synchronous Training Loop

Compute 
Gradients

Apply
Gradients Report Metrics

Update Weights

Parallel Rollouts Compute 
Gradients

● Bulk synchronous algorithms like A2C, PPO.
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Dataflow of Asynchronous Training

Compute 
Gradients

Apply
Gradients Report Metrics

Update Weights

Parallel Rollouts Compute 
Gradients

● Small change for async optimization (A3C)

Remove Sync Barrier
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Dataflow of Distributed Prioritized DQN

● Mixed async dataflow (Ape-X), with fine-grained updates
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(a) Creation & Message Passing

Dataflow Operators for RL
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Dataflow Operators for RL

(b) Transformation
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Dataflow Operators for RL

(c) Sequencing
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(d) Concurrency

A Dataflow Programming Model for Distributed RL
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A Dataflow Programming Model for Distributed RL

(a) Creation & Message Passing (b) Transformation

(c) Sequencing (d) Concurrency
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Implementation over Distributed Actor Framework

● Two separate modules: A general purpose parallel iterator 

library; a collection of RL specific dataflow operators
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Evaluation: Revisiting A3C

Compute 
Gradients

Apply
Gradients Report Metrics

Update Weights

Parallel Rollouts Compute 
Gradients

(b) Transformation
(Parallel Apply)

(c) Sequencing
(Async Gather) (b) Transformation

(Sequential Apply)

(a) Creation
(From Actor)

(a) Message Passing
(Send Message)
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Evaluation: A3C Comparison

 1 # type: List[RolloutActor]

 2 workers = create_rollout_workers()

 3 # type: Iter[Gradients]

 4 grads = ParallelRollouts(workers)

 5     .par_for_each(ComputeGradients())

 6     .gather_async()

 7 # type: Iter[TrainStats]

 8 apply_op = grads

 9     .for_each(ApplyGradients(workers))

10 # type: Iter[Metrics]

11 return ReportMetrics(apply_op, workers)

 1 # launch gradients computation tasks

 2 pending_gradients = dict()

 3 for worker in remote_workers:

 4     worker.set_weights.remote(weights)

 5     future = worker.compute_gradients

 6         .remote(worker.sample.remote())

 7     pending_gradients[future] = worker   

 8 # asynchronously gather gradients and apply

 9 while pending_gradients:

10     wait_results = ray.wait(

11         pending_gradients.keys(), 

12         num_returns=1)

13     ready_list = wait_results[0]

14     future = ready_list[0]

15 

16     gradient, info = ray.get(future)

17     worker = pending_gradients.pop(future)

18     # apply gradients

19     local_worker.apply_gradients(gradient)

20     weights = local_worker.get_weights()

21     worker.set_weights.remote(weights)

22     # launch gradient computation again

23     future = worker.compute_gradients

24         .remote(worker.sample.remote())

25     pending_gradients[future] = worker 

A3C Implementation in RLlib Flow A3C Implementation in Previous RLlib

Compute 
Gradients

Apply
Gradients

Report 
Metrics

Update Weights

Parallel 
Rollouts

Compute 
Gradients
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Evaluation: Revisiting Ape-X
(c) Sequencing
(Async Gather)

(b) Transformation
(Sequential Apply)

(a) Creation
(From Actor)

(a) Message Passing
(Send Message)

(d) Concurrency
(Asnyc Union)
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Evaluation: Readability (Ape-X)
 1 workers = create_rollout_workers()

 2 replay_buffer = create_replay_actors()

 3 rollouts = ParallelRollouts(workers).gather_async()

 4

 5 store_op = rollouts

 6     .for_each(StoreToBuffer(replay_buffer))

 7     .for_each(UpdateWeights(workers))

 8 

 9 replay_op = ParallelReplay(replay_buffer)

10     .gather_async()

11     .for_each(UpdatePriorities(workers))

12     .for_each(TrainOneStep(workers))

13

14 return ReportMetrics(

15     Union(store_op, replay_op), workers)
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Evaluation: Readability (Ape-X)

● Previous implementation:
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Evaluation: Composing Multiple Workflows

(d) Concurrency
(Duplicate)

(d) Concurrency
(Union)

(d) Concurrency
(Asnyc Union)

DQN Sub-Flow

PPO Sub-Flow
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Evaluation: Multi-Agent Training

 1 # type: List[RolloutActor]

 2 workers = create_rollout_workers()

 3 # type: Iter[Rollout], Iter[Rollout]

 4 r1, r2 = ParallelRollouts(workers).split()

 5 # type: Iter[TrainStats], Iter[TrainStats]

 6 ppo_op = ppo_plan(

 7     Select(r1, policy="PPO"), workers)

 8 dqn_op = dqn_plan(

 9     Select(r2, policy="DQN"), workers)

10 # type: Iter[Metrics]

11 return ReportMetrics(

12     Union(ppo_op, dqn_op), workers)

DQN Sub-Flow

PPO Sub-Flow
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Evaluation: Readability

● Lines of code saved for RLlib algorithms
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Performance against RLlib

(a) Sample efficiency on CartPole (Dummy) (b) Training throughput on Atari (IMPALA)

● The abstraction of RLlib Flow does not introduce overhead
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Reinforcement Learning vs Data Streaming

Compute 
Gradients

Apply
Gradients Report Metrics

Update Weights

Parallel Rollouts Compute 
Gradients

(1)                                       (2)                                     (3)                                    (4)

                                                                                         

● Asynchronous Dependencies (pink): no deterministic ordering

● Message Passing (pink dotted): update upstream operator state

● Consistency and Durability: less strict requirements
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Performance against Spark Streaming

● Lower-overhead than streaming frameworks -- take advantage 

of RL requirements vs. data processing
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RLlib Flow Operators:
1. Creation & Message Passing
2. Transformation
3. Sequencing
4. Concurrency

DQN Sub-Flow

PPO Sub-Flow

Apply
Gradients

Report 
Metrics

Update Weights

Parallel 
Rollouts

Compute 
Gradients

Architecture of RLlib Flow

Dataflow of A3C

Dataflow of Ape-X Dataflow of Multi-Agent

Lines of Code

Benchmark

Comparison to Spark


